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The field of a Dirac monopole is constructed in the framework of symplectic 
mechanics by imposing rotational and time translation invariance on the motion 
of a test particle. Quantization is achieved by the geometric method of Kostant 
and Souriau, which allows for an elegant solution of the quantum symmetry 
problem. Space-reflection symmetry is studied in addition. 

1. INTRODUCTION 

It was pointed out by Hrask6 and Balog (1978) that the field of a Dirac 
monopole can be constructed by imposing rotational (and time translation) 
symmetry on the motion of a test particle. Their paper is closely related to a 
previous one (Frenkel and Hrask6, 1977), where it is found that the rotation 
and parity operators for a particle in a monopole field differ from the usual 
expressions by suitable phase factors. 

Hrask6 and Balog (1978) and Frenkel and Hrask6 (1977) derive these 
results by conventional methods. But the introduction of strings and local 
potentials breaks the symmetry, and the resulting calculations become 
rather complicated. 

The point is that these difficulties are due more to the formalism than 
to the problem itself, and can be avoided by using suitable tools--differential 
geometric and fiber bundle techniques. This has been proposed as early as 
14 years ago by Souriau and Kostant (Souriau, 1966; Auslander and 
Kostant, 1967) and became finally accepted by physicists since a series of 
papers by Wu and Yang (1975, 1976). 

We propose here the rederivation of the above results in the framework 
of symplectic geometry and the geometric quantization theory of Kostant 
and Souriau (KS theory) (Souriau, 1970; Kostant, 1970; Woodhouse and 
Simms, 1976). This simplifies a great deal the calculation and explains the 
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geometric origin of the results found in Hrask6 and Balog (1978) and 
Frenkel and Hrask6 (1977) together with those in Wu and Yang (1976). The 
basic reference throughout this paper is Souriau's book (1970). 

An intuitive interpretation--close to Feynman's path integral ideas--of 
prequantization was given in Horv~tthy (1980) (where the relation to the 
nonintegrable phase factor of Wu and Yang was also discussed). Further 
details on symmetry transformations and groups will be given elsewhere. 

2. THE MONOPOLE'S FIELD CONSTRUCTED BY 
SYMMETRY ARGUMENTS 

The idea followed here--which we have borrowed from Hrask6 and 
Balog (1978)--is very simple: let us send a test particle in the field and try 
to see what are the limitations on the field imposed by the symmetry 
properties of the motion of our test particle. 

Explicitly, consider a particle moving in Q=R3\(0).  In the framework 
of symplectic mechanics (Souriau, 1970), we describe it by (E, o), where 
E= TQ • R is the evolution space, o a presymplectic form with dim ker o = 1. 
The classical motions are the characteristic curves of o. 

According to the principles of mechanics, o is composed of two parts: 

o=o0+eF (1) 

oo=dOo=d(m{v, dq}-mv2dt) describes here a free particle, ~: a closed 
2-form on space-time, X= Q x R represents the field, and e is the coupling 
constant (electric) charge. 

A classical symmetry group G (called a dynamical group in this 
context) is one which acts on E by symplectomorphisms: g*o=o, g ~ G. 

As 0 is invariant under time translation and space rotation, these 
groups become dynamical groups for (E, o) as soon as ~ is invariant under 
their action on X. 

Theorem. The most general form of 0= compatible with invariance 
under time translation and space rotation is 

~: =#a-dUAdt (2) 

where # is a real constant, ~2,={u, duXdu), the canonical (area) 
2-form on Sz, u~S2, and U~C~(R +). 

Physically, / ~  represents the field of a Dirac monopole of 
strength/~ (Souriau, 1970 [2nd edition]; Horv~tthy, 1980) situated at 
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the origin, and U is a central potential (cf. Hrask6 and Balog, 
1978). 

Proof. As Q = S 2 • R +, F - - a s  any 2-form on X- -can  be written as 

Fx=m(x)'a. +'~x Adr+[ex +f(x)dr]Adt 

where m, fEC~~ r eEAI(S2)| C~(R +). 
First, invariance under time translation t~t+.r implies that nothing 

depends on t. 
Next, invariance under rotation (u, r )~(gu,  r), g E SO(3) implies that 

m, f depend only on r [consequently, f =  - d U / d r  with UE C~176 +)], and 
~0, e are rotation invariant. 

The condition dB: = 0  has the consequence 

Integrating the first equation on the unit sphere around 0, we get 
(dm/dr)4~r=fs2&o=O by Stoke's theorem. Thus m=cons t= /~  and &0=0. 

Our theorem follows now from the following lemma. 

Lemma. If a is an exact, rotationally invariant 1-form on $2: 

a=da, g*a=a, g~SO(3) 

then a = 0 .  

Proof of the Lemma. Denote by dg the normalized Haar measure on 
SO(3). Then 

a=fso(3)g*adg=dfso(3)g*adg=O 

for A(u) = f g*a(u) dg is constant on S 2. This completes the proof of the 
lemma. "soo) 

Indeed, the restriction of ~0 or e onto a sphere of radius ~- satisfies the 
conditions of the lemma. �9 

Remark. Note that our F is not necessarily a solution of the classical 
field equations: we have to impose an additional requirement (correspond- 
ing to the second half of the Maxwell equations) of the form (Sternberg, 
1978) 

a(*F) =J 

[In our case, this gives U(r)=k/r.] 
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3. CLASSICAL OBSERVABLES AND CONSERVATION LAWS 

As a particle moving in the field of a monopole does not have an 
invariant (under rotations, e.g.) Lagrangian function (Horv~tthy, 1980) the 
conventional approach encounters difficulties (cf. Frenkel and Hrask6, 
1977). The geometric theory of moments (Souriau, 1970, p. 105), however, 
works beautifully. 

3.1. Angular Momentum. At the classical level, the angular momentum 
observable is associated with the infinitesimal action of SO(3) on E by the 
theory of moments. 

so(3) is a dynamical group of the system; to a Z from so(3), its Lie 
algebra, is associated a vector field Z E. As so(3) is semisimple, we may (by 
the Killing form) identify both so(3) and its dual to R 3. The moment 1 is 
defined by 

(3) 

One checks easily that I exists. The cohomological properties of SO(3) 
imply (Souriau, 1970; Woodhouse and Simms, 1976) that there is a unique 
choice for I such that 

Z~Iz:=(I,Z)~C~(E) (4) 

becomes a Lie algebra isomorphism. [The Lie algebra structure of C~(E) 
being defined by the Poisson bracket associated with o.] 

If we choose a basis Zj ( j=1 ,2 ,3)  of so(3), the angular momentum 
observables Ij are defined as Ij = (I,  Z j ) .  As a consequence of (4), we have 

Explicitly, I is computed as 

[q---- (u, r)]. 

= ( 5 )  

I=mq• (6) 

Furthermore, the generalized Noether theorem (Souriau, 1970, p. 107) 
tells us that I is conserved. 

3.2. Energy. Similarly, time translation t-~ t+~" is again, by construc- 
tion, a dynamical group. The corresponding conserved quantity is 

E=m@+U(r) (7) 

which is, of course, identified with the energy of the system. 
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4. PREQUANTIZATION 

The first step in constructing the quantum system corresponding to 
(E, o) is prequantization (Souriau, 1970; Horvhthy, 1980; Kostant, 1970; 
Woodhouse and Simms, 1976). This is possible iff the cohomology class of 
o/2~r is integral (we use units where h = 1). As el: is essentially the 
symplectic form of a spinning particle with spin s=elx (Souriau, 1970), we 
get 

Proposition. A charged particle moving in the field of a monopole is 
prequantizable iff 

n:=2etz~Z (8) 

(Dirac's condition). In what follows (8) will always be supposed. 
Explicitly, the prequantum manifold (Y("~, o~ ("), ~r (n~) corresponding to 

n ~ Z- -a  U(1) principal bundle with connection over E--is  constructed as 
follows: 

Let first 2e/~=l. Set ~ 3 : = { ~ C 2 - ( ~ = 1 ) .  (3-sphere of the 4-real- 
dimensional vector space C2.) Endow it with the (real) 1-form ((d~/i). 
Definep: ~3--->~2 as 

[p ( f ) ]  J={oflEN ( j =  1,2,3) (9) 

with the Pauli matrices oj. U(1) acts on N3: U(1)~z--,zl: ~3---~3(~ 
~ 3 ) Z I ( f f ) = Z "  ft. 

Set YO):=(~=(u,r,v,t,~)ETQ•215 (lOa) 

~r('~(~) := (u, r, v, t) ~ E  (10b) 

w(,):= 0 0 + (  --:-d~ (lOc) 
l 

z,(~) := (u, r, v, t,Zl(~')) (10d) 

Then (y(ll, w(t), ~rO)) prequantizes (E, o) for 2e/~= 1. 
For a general n E Z use the "m6thode de fusion" (Souriau, 1970, p. 

326): Fn:= {exp[(2~i/n)k]: k=0,  1 . . . . .  Inl) is a discrete subgroup of U(1). 
Set 

Y("):= Y(I)/F. (1 la) 

w(,):= O0+n.~= --=-d~ ( l lb)  
l 

~r(")([~] , ) :  =~r('~(~) (1 lc) 

zn([ ~ ]~) -- [z 1~/~ (~)]~ (1 ld) 

where [~]~ is the orbit of ~E yO~ under F.. 
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Proposition. (Y("), ~0 ("), ~r (")) prequantizes (E, o) for 2el~=n EZ. 

5. WAVE FUNCTIONS 

If we use the "vertical polarization" q---const (Souriau, 1970, 2nd 
edition), the general prescriptions of geometric quantization (Souriau, p. 
351), give the following: 

Proposition. For 2e/~= n E 7/ a wave function is a complex function 

~(~): ~3XR +--,12 (12) 

satisfying 

~(n)(Zn([ ff ]n) )= Z'~(n)([ ~ ]n) (13) 

Note that f(n)q~(n) is constant [by (13)] on the fibers of the U(1) bundle 
(S 3 X R +)/Fn; the base space, S 3 X R + admits the rotational-invariant mea- 
sure vo l ,Xdr  (vol, being the measure belonging to n(u, duXdu)=ns 
Thus 

: =  x .  + ~p-(')" q~176 x d r  (14) 

is a well-defined scalar product on the wave functions. 
Alternatively, these wave functions can be viewed as sections of the line 

bundle associated with our principal U(1) bundle (Kostant, 1970; 
Woodhouse and Simms, 1976). This is the fact recognized by Wu and Yang 
(1976). 

If we choose a local trivialization 831 ,~U~ • U(1) (U~ C 8  2 being an 
open set where ~:1, =FIv. is exact, each wave function will be represented 
here by an ordinary function ~p~('): U, XR + -,{2 according to 

*(~ 1.)1 o = zo. , t")( . ,  r) (15) 

(u, z~ ) E U, X R + X U(1) representing ~" Ep  I(U, x R +). 
If we change our local trivialization to U ~ X R + •  the wave 

function changes to 

+y)(u,  r ) =  C.~)(.) : +.~")(., r) (16) 

uEU,, D U~, where C~(/]): U~D U~-, U(1) is the transition function for the 
bundle ($3/r., P,$2)-  [This is the gauge transformation in Wu and Yang 
[1976, p. 367, formulas (8) and (9).] 
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6. SYMMETRY TRANSFORMATIONS 

If we have a classical symmetry transformation a: E-- ,E  which pre- 
serves the polarization (a rotation, e.g.) we can express its action on the 
wave functions as follows: 

As E is simply connected, any symplectomorphism a has a prequantum 
lift, i.e., an A: y ( n ) ~  y(n) such that A'to (n) =~0 (n), ~r(n)oA=aoer ('). If the 
polarization is preserved, A passes to S 3 /F ,  • R +, and the action on a wave 
function q~(') is simply 

gl( ')~( '):=~(')  o A - 1  (17) 

If the measure of integration is invariant under a, then (17) defines a 
unitary operator. Note that A is ambiguous up to a phase factor (Souriau, 
1970). 

Choosing a local trivialization (17) reads as 

( a(.")q~(') )( u, r )=(')F.~( u ) .q~(.')( a - 'u, r) (18) 

where (")Ff(u): U~ f3 a o U, ~ U(1) is a unitary factor [cf. Frenkel and Hrask6, 
1977 (18)]. (For symplectomorphisms which do not preserve the polarization 
- - t ime translation, e.g.--the situation is much more complicated.) 

If we have now a group of polarization-preserving symplectomor- 
phisms, we can lift all elements individually, but the rifts will not form, in 
general, a group (Souriau, 1970; Kostant, 1970; Woodhouse and Simms, 
1976) (this is just the old problem of unitary versus projective representa- 
tions). We study here the rotation group G=SO(3) .  

6.1. Rotations. The action of rotations on the wave function is studied 
best by working with SU(2), rather than SO(3). 

SU(2) is again a dynamical group of our system; its action on (E, o) is 
induced by that of SO(3). The same cohomological properties we referred to 
in Section 3 allow for lifting su(2)  to the prequantum level acting there as a 
group of quantomorphisms. As the action of SU(2) on E preserves the 
vertical polarization, we can define its action directly on Q and S 3 / F  n • gr +. 
If we represent a g E S U ( 2 )  by a 2 •  complex matrix, the action of g on 
S 3 / F  ~ is just [~]n~[g~]n. 

Consequently, the action of SU(2) on the wave function is expressed, 
according to (17), as 

~(")( [  ~" ]., r) = ~(')([ g-~]  . , r )  (19) 

As vol. is a rotationally invariant measure on $2, we have the following: 
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Proposition. Equation (19) defines a unitary representation of SU(2). 
SO(3) itself will be represented unitarily iff the kernel of the projection 

SU(2)~S0(3) goes to identity, which happens iff n/2=el~Z.  In other 
cases SO(3) will have merely a projective (ray) but not unitary representa- 
tion (a rotation by 2~r, e.g., changes the sign of the wave function). 

Expressed in local coordinates we recover the formula (18) in Frenkel 
and Hrask6 (1977): 

( ~")~n) )( U, r)=(")F,~(u).+~m(g-au, r) (20) 

The phase factor F~ is found explicitly as follows (cf. Frenkel and 
Hrask6, 1977): Any ~ES  3 is an image of (~)E~ 3 by a g~SU(2). If g~ has 
Euler angles (% O, q~) ~ is written as 

( e x p [ i ( ~ + + ) / 2 ] c o s ( 0 / 2 )  ) 

~= iexp[-i(~p-q~)/2] s in(0 /2)  

Denote (cf. Frenkel and Hrask6, 1977) Ua: = $ 2\{ south pole), cos( 0/2)  ~ 0 
here, and 

[;],[a~(u,exp(i[(ep+~)/2]n))EUaXU(1) (211 

is a well-defined local trivialization of $3/F, .  Thus we get directly [cf. 
Frenkel and Hrask6, 1977, (18), (19)] 

(")F~( u ) =exp[ i( n/Z)( Up + ~o-~P- yo ) ] (22) 

where ~ is any point from p -  L(u), having Euler angles (% 0,70), mapped to 
g-l~ by a gESU(2) with Euler angles (~, 0-, ~0). 

6.2. Angular Momentum. The quantum observables called angular 
momentum are, by definition, the generators of the action of SU(2) on the 
wave functions. But these generators are, according to (19), deduced from 
the infinitesimal action of SU(2) on the bundles S 3 /F  n X R +. To a Z from 
su(2), the Lie algebra of SU(2), is associated a vector field Zn on $3/Fn • 
R +. By (19), we have 

( I(Zn)~(n' )([; ]n' r ) : ( Z , +  ("))([ ~" 1,, r) (23) 

[The coherence of the notation is a consequence of the cohomological 
properties of SU(2) allowing for prequantum lifting: the possible ambiguity 
in choosing a Z~su(2) to I z does not affect the fight-hand side of (23).] 
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As Z--, Z n is a Lie algebra isomorphism (the Lie algebra structure on 
the vector fields on $3/Fn •  being induced by the Lie bracket), we 
deduce that 

I z ~_f(2 ~ (24) 

is again a Lie algebra isomorphism, for the Lie bracket of Z,  and Z', is 
carried by (23) to the commutator of the operators Iz, Iz,. 

A local expression for ] = ( i l ,  i2, i3) is found either by deriving directly 
(20) or using the equivalence of the principal bundle (Souriau, 1970) and the 
line bundle (Kostant, 1970; Woodhouse and Sims, 1976) setting; in both 
cases we get 

( ~fd~")=q• [ 1 i ~kju ~ eA~)(q)] -e~ 'u  (25) 

cf. Frenkel and Hrask6 (1977), (23) and Wu and Yang (1976), (12) [q= (u, r)]. 

6.3. Space Reflection. Frenkel and Hrask6 (1977) settled the con- 
troversy raised by Schwinger (1966) concerning reflection symmetry. As 
they point out, the correct setting is to study two systems corresponding to 
motion in the field of monopoles with strengths/~ and -/~, respectively. In 
our terminology we have (+)E=(-)E=E= T(• 3 \ (0})X R but 

(+)a = % + e/~s (26a) 

( - )0=% --e/A2 (26b) 

Space reflection P(u, r)= ( -u ,  r) lifts then to a symplectomorphism P: 
(E, ~+)o 1)--, (E, ~-~o). 

The systems (E,(+)%) and (E,(-)%) are prequantized to 

(+)Y(") = Y(") and (+)~("): = w(") (27a) 

( - )y( , , )  = y ( - , , )  = y(,,) _-(+)y(,O and (-)~(n): =o~(-,,) (27b) 

for s = s  [notation (11)]. 
Consequently, the wave functions of both systems can be identified and 

have the form 

+~"~: S3/F,, x R  + ~ C  (28) 

satisfying the "circulation condition" (13). 
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In order to study the parity operator on the wave functions, we have to 
find first a quantomorphism 

/6(,,): (y(,,), o,)(n) )_.._)( y(n), (ao(--n) ) (29) 

projecting to P: (E,<+)o)--,(E,<-)o). Then, by (17) 

(30) 

Recall now that C 2 admits a quaternionic structure defined by 

J c2 = ?l ' c j E C , j = I , 2  (31) 

One checks at once that J maps S 3 CC 2 to $3 CC 2, carries ((d~/i)  to 
- ( ( d ~ / i )  and its projection to $2 is just the inversion u - - , - u .  Further- 
more, the orbit of a point in S 3 under Fn is mapped to the orbit of the 
corresponding point in S 3 under F_~=F, .  Thus, up to an arbitrary phase 
factor z ~ u(1), 

/;(n)([~] n, ~-) : ( [J~]n,  r)  (32) 

It is easy to see, that although classically p 2 :  1, [ff(n)]2=#:l in general. 
Indeed, if c E C, then c o J :  J o ~, and thusl 

[p(n)]2~(n)=~(n)  o (-- 1) n : (-- 1)'-~br (33) 

In order to get a local expression, consider the local trivializations (21) 
corresponding to n; with the choice (32) one gets 

( P~an)~a n) )( u, r ):e-i~n'~(dn)(--U, r ) (34) 

cf. Frenkel and Hrask6 (1977), equation (27). 

7. CONCLUSION 

The aim of this paper is to convince physicists . that the natural 
language of studying Dirac's monopole is the geometric one used here. We 
hope that nobody will, in the future, introduce such complicated and 
superfluous objects as strings. 

I(_ 1),~ denotes here the action of (-1)'," Eu(1) on y(n). 
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